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Robust Optimization in pSeven 

Robust single- and multi-objective constrained 

optimization in pSeven supports virtually all 

possible robust formulations, including 

probabilistic and quantile type constraints. It is 

based on the original state-of-the-art stochastic 

approach developed by DATADVANCE. The 

basis of the method is a careful adjustment of 

current number of sampled uncertain 

parameters. Only a small number of random 

realizations away from optimality is to consider, 

but their number must increase once optimal 

solution is approached. The unique feature of 

this family of algorithms is that they provide both 

the solution and corresponding uncertainty 

estimates of objective/constraints values at the 

solution found.  A particular advantage of robust 

optimization algorithms in pSeven for 

engineering applications is that explicit 

distribution law of the uncertain parameters is 

not required. It is enough to provide their 

distribution empirically.  

I. Overview 

    Robust optimization tasks emerge when some 

external to original formulation parameters are 

not well known.  Uncertain model parameters 

make optimization problem not well defined. 

Indeed, if we ever admit "random" dependencies 

of problem data (objectives, constraints), then 

the problem solution becomes also random and 

hence has no meaning. One must exclude 

randomness from the problem. It is common to 

consider various expectations and moments of 

relevant distribution. Optimization task 

reformulated respectively is known as robust 

counterpart of the original problem. Worst-case 

scenarios are known to be too restrictive and 

thus not considered by pSeven. Instead, 

randomness is assumed to be eliminated by 

taking appropriate expectation values. 

Unfortunately, none of these expectations could 

be calculated, the only possibility is to 

approximate them. Then a prime problem is the 

degree of approximation accuracy. Rough but 

cheap approximations would be good to 

consider, but in the same time, high accuracy 

should be provided to properly represent 

hypothetical original problem. In this problem 

expectations are calculated exactly (the term 

"original" refers to such hypothetical "exact" 

formulation.) Usually, the optimal strategy is 

adaptive: the closer optimal solution is, the more 

accurate approximations must be. Side effect of 

inability to explicitly consider the original 

problem is that only approximate (candidate) 

solutions can be obtained. So every candidate 

solution must be validated to ensure its 

closeness to the solution of original problem. 

This is an example of robust optimization 

specific features, not present in non-robust 

cases. 

      Another issue within the robust design 

optimization framework is the presence of new 

type of constraints, so called chance constraints. 

These are hard to consider, because their 

accuracy evaluation (even moderate) is 

extremely expensive, while corresponding 

approximations lead to strongly discontinuous 

subproblems. Proposed solution is to construct 

smooth over-estimators of chance constraints, 

so that the corresponding accuracy increases as 

algorithm proceeds. 

II. Quantitative Discussion 

A. Generic Formulation of Robust 

Optimization Problems and its Stochastic 

Approximation.  

In the majority of practical applications 

"classical" formulation of optimization 

problem 
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is not adequate. In reality, problem data 

𝑓, 𝑐 additionally depend upon external "random" 

parameters 

𝜉 from some uncertainty set 𝑈𝜉: 

𝑓(𝑥) → 𝑓(𝑥, 𝜉)𝑐(𝑥) → 𝑐(𝑥, 𝜉)𝜉 ∈ 𝑈𝜉 

In this circumstances, the optimal solution 𝑥∗x∗ 

becomes also dependent upon "random" 

realizations of ξ 𝑥∗ → 𝑥∗(𝜉) and hence is devoid 

of meaning. Therefore, the dependence upon 

external parameters must be considered at the 

level of problem formulation. 

𝑚𝑖𝑛
𝑥

𝑓
→

(𝑥, 𝜉)

𝑐
→

𝐿 ≤ 𝑐
→

(𝑥, 𝜉) ≤ 𝑐
→

𝑈

→ 𝑥∗(𝜉) 

 

Evidently, one should get rid of ξ-dependence of 

the solution 𝑥∗(𝜉) ⟶ 𝑥∗. The decision on what is 

the optimal solution x∗ must be taken as soon as 

possible, before the specific realization of ξ is 

known! 

Depending on the specific meaning of the 

reduction 𝑥∗(𝜉) → 𝑥∗, various formulations of 

robust optimization problems are possible. For 

instance, if the probability distribution 𝜌(𝜉) of 

uncertain parameters is known, we could 

consider 

𝑓(𝑥, 𝜉) → 𝐹(𝑥) ≡ 𝐸[𝑓(𝑥, 𝜉)] = ∫ 𝑑𝜉𝜌(𝜉)𝑓(𝑥, 𝜉) 

Constraints are more tricky.  There are several 

possibilities: 

  - Expectation constraints: 𝑐
→

𝐿 ≤ 𝐸
→

[𝑐(𝑥, 𝜉)] ≤ 𝑐
→

𝑈 

  - Chance constraints: 𝑃{𝑐𝐿
𝑖 ≤ 𝑐𝑖(𝑥, 𝜉) ≤ 𝑐𝑈

𝑖 } ≥

1 − 𝛼𝛼 ∈ (0: 1) 

pSeven adapts stochastic approximation to the 

averages in question. Advantages of stochastic 

approach: 

- Details and specific form of probability 

densities ρ(ξ) are completely delegated 

to end-user (Note that in real-life 

applications determination of 

appropriate ρ(ξ) might be very difficult)    

     * It is enough to know only empirical 

distribution ρ(ξ) without any analytical 

equations 

     * Uncertainty set Uξ  is never used 

explicitly 

- Flexibility: stochastic formulation is 

suitable for virtually all cases 

However, there are a few notable disadvantages 

as well: 

- Efficient solution of stochastic 

optimization problems requires specific 

approaches. Therefore, pSeven 

considers the following general 

formulation of robust optimization 

problems: 

𝑚𝑖𝑛
𝑥

𝐸[𝑓(𝑥, 𝜉)]

𝑐𝐿 ≤ 𝐸[𝑐(𝑥, 𝜉)] ≤ 𝑐𝑈and/or𝑃{𝑐𝐿 ≤ 𝑐(𝑥, 𝜉) ≤ 𝑐𝑈} ≥ 1 − 𝛼
 

The main difficulty is that none of expectations 

E{...} or probabilities P{...} could ever be 

calculated precisely. Then the question arises: 

what is the meaning of solution of stochastic 

problem alone? It is not enough to simply solve 

approximated problem.  One must ensure that 

the approximate solution found is indeed 

"almost" optimal and close to the solution of 

original problem. Therefore, the prime difficulty 

in solving stochastic task is the fact that one has 

to not simply find the solution, but also validate 

the proposed candidate. 

The idea of stochastic approximation utilized in 

pSeven is simple: 

𝐸[𝑓(𝑥, 𝜉)] ≈
1

𝑁
∑

𝑖

𝑓(𝑥, 𝜉𝑖) ≡ 𝑓𝑁(𝑥) 

where {𝜉𝑖},  𝑖 = 1, . . . , 𝑁 is a finite ξ-sample, given 

externally and presumably distributed with ρ(ξ). 

Key questions to be discussed: 

  - Since sample size N is always finite -- what 

might be "the answer" for the original problem? 
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  - How large N must be taken? How it depends 

upon optimality of current approximate solution? 

  - What should be done with chance constraints 

since at finite N straightforward approximation 

𝑃{𝑔(𝑥, 𝜉) ≥ 0} ≈
1

𝑁
∑𝑖 Θ(𝑔(𝑥, 𝜉𝑖)) ≡ 𝑝𝑁(𝑥)  is 

discontinuous (discontinuities being of order 

∼1/N). 

B. The Meaning of Approximated Problem 

Solution 

Speaking about the meaning of solution 

approximated with finite sample, it should be 

noted that it is natural to consider two 

characteristics for any solution x of arbitrary 

optimization problem: 

  - Feasibility measure 𝜓(𝑥)   

  - Optimality measure 𝜃(𝑥) 

       𝜃(𝑥) = 𝑚𝑖𝑛
𝜆𝑖≥0

|∇𝑓(𝑥) + ∑𝑖 𝜆𝑖∇𝑐𝑖(𝑥)|2 

which is the norm of KKT conditions residual. 

In the stochastic context, we should also 

consider corresponding stochastic 

approximations 𝜓𝑁, 𝜃𝑁. 

Therefore, the most complete answer available 

in stochastic approach reduces to: 

- Probability that feasibility measure of 

approximate solution 𝑥𝑁
∗  is greater than 

a given tolerance 𝛿𝜓  

- is less than predefined threshold Y% 

             𝑃{𝜓(𝑥𝑁
∗ ) > 𝛿𝜓} ≤ 𝑌%    

- Probability that optimality measure of 

approximate solution 𝑥𝑁
∗  is greater than 

a given tolerance 𝛿𝜓   

- is less than predefined threshold X% 

𝑃{𝜃(𝑥𝑁
∗ ) > 𝛿𝜃} ≤ 𝑋% 

Parameters 𝛿𝜓 and 𝛿𝜃 are to be given 

externally. Quantiles Y% and X% might be taken 

as constant (commonly accepted value is 5%). 

Now the generic scheme to solve stochastic 

optimization problem can be summarized as 

follows: 

 1. Approximate original problem for 

sufficiently large sample size N. 

 2. Solve approximated task to obtain 

candidate solution 𝑥𝑁
∗  with usual means. 

Question: since the solution of 

approximated subproblem is also 

approximate - what are the appropriate 

tolerances 𝜖𝑁
𝜓

, 𝜖𝑁
𝜃  to be used in finding 

candidate 𝑥𝑁
∗ ? 

 3. Check statistics of obtained 

candidate: ensure that both expectations 

((𝛿𝜃𝑁 , 𝛿𝜓𝑁) and statistical uncertainties 

((𝛿𝜃𝑁 , 𝛿𝜓𝑁)) are sufficiently small. 

 4. If statistical precision of candidate is 

insufficient, enlarge sample size and 

continue with next cycle. 

C. Efficient Sample Size Selection 

The central question of this approach is how to 

select current sample size efficiently. To address 

it, let us note that there are two different sources 

of uncertainties at every stage of stochastic 

problem solution: statistical uncertainties, ∼

1/√𝑁 and "systematic" uncertainties (tolerances 

of optimization at every fixed N). Usually, 

optimal strategy is to keep both statistical and 

systematic errors of the same order. This simple 

observation allows to unambiguously fix required 

tolerances 𝜖𝑁
𝜓

, 𝜖𝑁
𝜃  to obtain candidate solution 

and current sample size. Below is the scheme of 

efficient algorithm to solve stochastic problem: 

  1. Set initial (relatively small) sample 

size N [heuristics] and μ=0 

  2. Consider the statistics at initial point 

𝑥𝑁,𝜇
∗ : 

     - calculate statistical 

uncertainties (𝛿𝜃𝑁,𝜇 , 𝛿𝜓𝑁,𝜇) 

     - set the tolerances 𝜖𝑁,𝜇
𝜓

∼ 𝛿𝜓𝑁,𝜇 ,  

𝜖𝑁,𝜇
𝜃 ∼ 𝛿𝜃𝑁,𝜇  for optimization at the initial 

stage 
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3. Optimization of N-approximated 

problem with tolerances(𝜖𝑁,𝜇,
𝜓

 

𝜖𝑁,𝜇
𝜃 ) obtaining the next candidate 

solution 𝑥𝑁,𝜇
∗ . 

4. Validation of candidate solution 𝑥𝑁,𝜇
∗ : 

statistics estimate in x∗N,μ, evaluation of 

(δθN,μ, δψN,μ). finished if statistics is 

good enough. 

5. Estimation of required sample size 

𝑁𝑛𝑒𝑥𝑡  for the next iterate 

 𝑁𝑛𝑒𝑥𝑡 = 𝑁 ⋅

heuristics{(
𝛿𝜃𝑁

𝛿𝜃
)2, (

𝛿𝜓𝑁

𝛿𝜓
)2, 𝑥𝜇−1

∗ , 𝑥𝑁,𝜇
∗ } 

-  𝛿𝜃, 𝛿𝜓 are the required precisions 

- heuristics keeps 𝑁𝑛𝑒𝑥𝑡  in reasonable 

limits, depends upon the progress made 

6. Rescaling of optimization tolerances 

with factor ∼ √𝑁/𝑁𝑛𝑒𝑥𝑡  which expresses 

"statistics" ≈ "systematics" 

7. New iteration (3) for N-approximated 

problem with 𝑁 = 𝑁𝑛𝑒𝑥𝑡. 

 

D. Chance Constraints Treatment 

The idea of efficient chance constraints 

treatment is to consider continuous majorant of 

the original discontinuous stochastic 

approximations, making approximation more 

accurate with increasing N. In equations: 

𝑃{𝑔(𝑥, 𝜉) ≥ 0} ≡ 𝐸[Θ(𝑔(𝑥, 𝜉))] ≤ 𝛼 

𝐸[Θ(𝑔)] ≤ 𝐸[𝑅𝜀(𝑔)] ≈
1

𝑁
∑

𝑖
𝑅𝜀(𝑔𝑖) 

where Θ(𝑥) is a step function, 𝑅𝜀(𝑥) is a 

(smooth) majorant of Θ(𝑥) and 𝜀 = 𝜀(𝑁) 

Θ(𝑥) ≤ 𝑅𝜀(𝑥)∀𝑥, 𝜀 

𝑙𝑖𝑚
𝜀→0

𝑅𝜀(𝑥) = Θ(𝑥)∀𝑥 

𝑙𝑖𝑚
𝑁→∞

𝜀(𝑁) = 0 

Issue to mention here (it is successfully resolved 

in pSeven) concerns apparent conformal (scale) 

non-invariance of proposed approach: 

∀𝜏 > 0: Θ(𝜏𝑥) ≡ Θ(𝑥)𝑅𝜀(𝜏𝑥) ≠ 𝑅𝜀(𝑥) 

The point is that regularization revives former 

zero mode and this is taken into account. 

Solution is to dynamically adjust the scale 

parameter: 

𝐸[𝑅𝜀(𝑔))] ≤ 𝛼 ⟹ 𝑚𝑖𝑛
𝑡≥0

𝐸[𝑅𝜀(𝑔/𝑡))] ≤ 𝛼 

or even better (to avoid singularity at 𝑡 = 0 

𝑚𝑖𝑛
𝑡≥0

[𝐸[𝑡𝑅𝜀(𝑔/𝑡))] − 𝛼𝑡] ≤ 0 

Another issue arises when regularized problem 

appears to be infeasible. One can see that it 

does not follow from 𝐸[Θ(𝑔)] > 𝛼 that 𝐸[Θ(𝑔)] >

𝛼  for any positive ε. Hence, the decision on 

infeasibility of original problem must be delayed 

until regularization is completely removed. 

E. Notes on Statistics Estimation 

The efficiency of the approach to robust 

optimization crucially depends upon the ability to 

perform statistics estimation in most economical 

way. Potentially, it requires a lot of additional 

model evaluations without any progress in 

design variables. One of the standard 

approaches considers auxiliary additionally 

generated ensemble {𝑥𝑁
∗ }𝑖  𝑖 = 1, . . , 𝑀, which is 

extremely expensive (requires ∼ (𝑀 − 1) ⋅ 𝑁 ≫

𝑁 additional evaluations). Solution implemented 

in pSeven is to use a well-known jackknife 

method, which does not require additional 

evaluations at all. 

F. Couple of Illustrative Examples 

1. Quantile optimization example taken from: 

B.~Lu, ''Theory and practice of uncertain 

programming'' (2009),112. 

𝑚𝑖𝑛𝜙

𝑐1 ≡ 𝑃{0 ≤ ∑
3

𝑖=1
𝜁𝑖𝑥𝑖 + 𝜙} ≥ 0.9

𝑐2 ≡ 𝑃{∑
3

𝑖=1
𝜂𝑖𝑥𝑖

2 ≤ 8} ≥ 0.8

𝑐3 ≡ 𝑃{∑
3

𝑖=1
𝜏𝑖𝑥𝑖

3 ≤ 15} ≥ 0.85

 

𝜁1 ∼ 𝑈(1,2)𝜂1 ∼ 𝑈(2,3)𝜏1 ∼ 𝑈(3,4)
𝜁2 ∼ 𝑁(1,1)𝜂2 ∼ 𝑁(2,1)𝜏2 ∼ 𝑁(3,1)

𝜁3 ∼ 𝐸𝑥𝑝(1)𝜂3 ∼ 𝐸𝑥𝑝(2)𝜏3 ∼ 𝐸𝑥𝑝(3)
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𝑈(𝑎, 𝑏): uniform distribution on [a;b]; 

𝑁(𝑎, 𝑏): normal distribution with mean a and 

variance b; 

𝐸𝑥𝑝(𝑎): exponential distribution with parameter 

a. 

In the reference cited above the genetic 

algorithm with meta-modeling was used, the 

result is: 

1

1.5 ⋅ 107evaluations

𝑥∗ ≈ (1.404,0.468,0.924)𝑓∗ ≈ −2.21
𝑐1 ≈ 0.9𝑐2 ≈ 0.8𝑐3 ≈ 0.85

 

Note that the meaning of "≈" was not clarified. 

Application of pSeven approach with required 

tolerances 𝛿𝜃, 𝛿𝜓 = 2.5% gives: 

𝑥∗ = (1.53,0.44,0.61)𝑓∗ = −2.22(3)
𝑐1 = 0.92(2)𝑐2 = 0.85(2)𝑐3 = 0.88(2)

 

with only ≈ 4.2 ⋅ 104 evaluations, which by 3 

orders of magnitude smaller than the number 

cited above. 

2. Robust bi-objective optimization 

Let 𝑓(𝑥) = −
1

5(11−𝑥)2+2
+

1

120
(𝑥 − 15)(𝑥 − 16) −

2. Then the problem is: 

min(𝐸[𝑓(𝑥 + 𝜉)], 𝑉𝑎𝑟[𝑓(𝑥 + 𝜉)])

𝑥 ∈ [0: 28]𝜉 ∼ 𝑁(0,2)
 

Pareto set is known to be located in 𝑥 ∈

[13.2; 15.75]. 

 

Depending on externally given tolerances, 

pSeven robust optimization algorithms require 

 𝛿𝜃 = 0.3%: 6 ⋅ 105𝛿𝜃 = 0.2%: 1.1 ⋅ 106 

evaluations, which have to be compared with 

typical evaluation count of Monte-Carlo based 

methods, (5 ÷ 8) ⋅ 106. 

 

III. Notes on Surrogate-Based Robust 

Optimization in pSeven 

It is straightforward to apply pSeven surrogate 

based optimization capabilities to robust 

optimization problems. Indeed, one has to 

repeatedly solve a sequence of N-sample 

approximated subproblems within the stochastic 

approximation approach, which are expensive to 

evaluate (because of presumably large N) and 

thus surrogate modeling techniques are 

required. Surrogate-based robust optimization in 

pSeven follows this scheme, however, there are 

a few notable issues: 

1. There is no need to perform chance 

constraints regularization for SBO-type 

approaches. Surrogate models are almost 

insensitive to local discontinuities in 

approximated probabilities until the last stages 

of optimization, when sample size is hopefully 

large enough to mitigate the issue completely.  

2. Application of surrogate modeling techniques 

supplemented with constantly growing sample 

size requires an additional care to properly 

reuse already evaluated designs. Although this 

issue is rather technical, it allows in some cases 

a great reduction of required number of 

evaluations. 

 


